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Abstract. The discovery of optimal or close to optimal query plans for
SPARQL queries is a difficult and challenging problem for query optimis-
ers of RDF engines. Despite the growing volume of work on optimising
SPARQL query answering, using heuristics or data statistics (such as car-
dinality estimations) there is little effort on the use of OWL constructs
for query optimisation. OWL axioms can be the basis for the develop-
ment of schema-aware optimisation techniques that will allow significant
improvements in the performance of RDF query engines when used in
tandem with data statistics or other heuristics. The aim of this paper is
to show the potential of this idea, by discussing a diverse set of cases that
depict how schema information can assist SPARQL query optimisers.

1 Introduction

The Linked Data paradigm, which is now the prominent enabler for sharing
huge volumes of data using Semantic Web technologies, has created novel chal-
lenges for non-relational data management technologies such as RDF and graph
database systems. Semantics of Linked Data are expressed in terms of the RDF
Schema Language (RDFS) and the OWL Web Ontology Language. RDFS and
OWL vocabularies are used from nearly all data sources in the LOD cloud. More-
over, according to a recent study?, 36.49% of LOD use various OWL fragments,
so it becomes critical to optimize RDF engines by considering OWL features.
Commercial RDF engines implement RDFS and OWL rules by performing
forward or backward reasoning. Regardless of the way of reasoning, they ba-
sically store RDF data in a large triple table and consequently the evaluation
of SPARQL queries boils down to performing a query with a large number of
costly self-joins. To evaluate such difficult SPARQL queries a number of pro-
totypes have been proposed. Many of these approaches propose a mapping of
regular schema-conforming part of the RDF dataset into a set of relational ta-
bles [1,2,4], and rely on the optimization techniques of the underlying DBMSs
for query evaluation. Other approaches [6,7,9,13] propose main-memory resi-
dent extensive indexes for RDF triples. In either case, information residing in
OWL schemas is rarely taken into account as in [3,5,8,11], so it is our belief
that an an OWL schema-aware SPARQL query optimizer could complement
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those approaches since many datasets (especially in the LOD Cloud) come with
such good quality schemas.

In this paper we discuss how schema information expressed in terms of OWL
ontologies can be used to perform interesting, possibly complex, optimizations in
order to improve SPARQL query execution plans, and, consequently, the perfor-
mance of the RDF engines. Such optimizations can be employed in a complemen-
tary fashion to traditional ones to further improve query planners’ performance.
Our intention in this work is not to provide full solutions, but to present the
potential of the idea (fully described in [10]) by discussing some possible types
of optimizations (Section 2) that can be performed. Many more may exist.

2 Schema based Optimization Techniques

2.1 Constraint Violation

An RDF engine could be able at compile time to take advantage of class and
property constraints as expressed in an OWL schema; these include equivalence
(owl:equivalentClass, owl:equivalentProperty) and disjointness (owl:dis-
jointWith, owl:propertyDisjointWith) of classes and properties as well as
constraints relevant to the property’s domain and range (rdf s:domain and

rdfs:range resp.). For instance, a query looking for an instance of two dis-
joint classes (owl:disjointWith construct) is certain to return no answers, so it
should be answerable in constant time, without having the query engine evaluate
it. This kind of information is important for RDF engines that follow either a
forward or backward reasoning approach for computing the inferred knowledge.

2.2 Selectivity Estimation

Cardinality Constraints: OWL allows defining cardinality restrictions through
the min (owl:minCardinality), maz (owl:maxCardinality) and ezact (owl:car-
dinality) cardinality constraints for object and datatype properties, which state
how many instances of said property a resource can have. These schema-level
constraints can be used to guide the optimizer into selecting a possibly efficient
join ordering without resorting to statistics [3,5]. To do so, triple patterns that
refer to more selective properties (e.g. functional properties, owl:Function-
alProperty could be pushed down in the plan to reduce intermediate results).
Complex Class Expressions: Selectivity of triple patterns in a SPARQL query
can be estimated through OWL constructs that define classes through set op-
erations, such as intersection (owl:intersection0f) and wunion (owlunionOf).
For example, consider a query that requests instances ?x of a class <C>, the
latter defined as an intersection of classes <C1> and <C2>, in conjunction with
triple patterns that relate instances 7y and 7z of the intersected classes, with
triple patterns with predicates <P1> and <P2>. The class <C>, being more se-
lective, should be considered first in a bushy plan with two sub-trees (around ?x
and 7y, respectively) being joined with a hash join. Without the knowledge of
schema constraints, the query optimizer would put the three triple patterns with
rdf:type predicate at the end, since those usually match a lot of triples [12]. An
analogous line of thought can be followed for the owl:unionOf construct.
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Fig. 1: Optimal plan, considers C' = C1 owl:intersection0f C2 (right) and
suboptimal ignores the rule (left)

Class and Property Hierarchies: Hierarchies of classes and properties (through
rdfs:subClass0f and rdfs:subProperty0f) can also improve selectivity esti-
mation. In this case, the triple patterns that request for instances of classes found
lower in a class hierarchy should be considered first in a query plan (depending
on the form of the query), when deciding join ordering.

2.3 Advanced Optimizations

In this section we present a set of cases where schema information can help the
query engine determine the optimal plan in a more sophisticated way.
Inference: In backward reasoning systems, the inferred knowledge obtained
through OWL reasoning rules is computed at query time. Is some cases, the
same information may be obtained in various ways. For example, assume that we
have a long hierarchy where <B;> is a subclass (rdfs:subClass0f) of <B; 1>,
i =1,...,n. Consider also that the domain (rdfs:domain) of property <P> is
class <A> and all its values (owl:allValuesFrom) come from root class <Bpyi>.
In a query that asks for instances ?v of class <B,y;> that are also values of
property <P>, there are two ways to obtain instances ?v: one through the
owl:allValuesFrom (cls-avf axiom?), and another through the transitivity of
rdfs:subClassOf (car-sco axiom*). For large n, class <B, 1> is positioned high
in the hierarchy, so the engine should use the owl:allValuesFrom construct to
obtain the values for ?v. The alternative may be better if the two classes are
sufficiently “close” in the hierarchy, especially given the fact that subsumption-
related inference is the most optimized type (due to its widespread use).

Star Query Transformation: Schema information can also be used by the
query optimizer to rewrite SPARQL queries to equivalent ones that have a form
for which already known optimization techniques are easily applicable. For exam-
ple, when a triple pattern, involving a symmetric property (owl:SymmetricPro-
perty), “breaks” a star-shaped query pattern (subject values of remaining triple
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patterns appear as an object value), a schema-aware optimizer, should rewrite
this query into its equivalent one, where all triple pattern’s subject values are
the same, according to the semantics of owl:SymmetricProperty.

3 Conclusions

We advocated on the use of OWL schema information for improving SPARQL
query planning, and described some optimizations that can be employed in this
direction. Our proposal is meant to be complementary to well-known optimiza-
tions (e.g., based on statistics) for query planning, and is most appropriate for
datasets and benchmarks that use a rich schema structure (e.g., UOBM). In
the future, we plan to work further on understanding the different possible op-
timizations and potential trade-offs, so that they can be implemented on top of
an RDF store in order to quantify the achieved speed-up.
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